Resource Library

Protocol References

The following is a list of clinical studies, research, and articles that our Science Board uses for crafting your personalized Care Maps.

Last Updated 9/14/2023

Centers for Disease Control and Prevention, National Center for Injury Prevention and Control. Report to Congress on traumatic brain injury in the United States: Epidemiology and rehabilitation. Atlanta (GA): Centers for Disease Control and Prevention; 2015.

Centers for Disease Control and Prevention, National Center for Injury Prevention and Control. Report to Congress on mild traumatic brain injury in the United States: Steps to prevent a serious public health problem. Atlanta (GA): Centers for Disease Control and Prevention; 2003.

Centers for Disease Control and Prevention. National Center for Health Statistics: Mortality data on CDC WONDER. Available at: https://wonder.cdc.gov/mcd.html.

Centers for Disease Control and Prevention, National Center for Injury Prevention and Control. Health disparities and TBI. Available at: https://www.cdc.gov/traumaticbraininjury/health-disparities-tbi.html.

Daugherty J, Waltzman D, Sarmiento K, Xu L. Traumatic brain injury–related deaths by race/ethnicity, sex, intent, and mechanism of injury — United States, 2000–2017. MMWR Morb Mortal Wkly Rep. 2019;68(46):1050-1056.

Centers for Disease Control and Prevention, National Institutes of Health, Department of Defense, and Veterans Administration. Report to Congress on traumatic brain injury in the United States: Understanding the public health problem among current and former military personnel. Atlanta (GA): Centers for Disease Control and Prevention; 2013.

Stubbs J, Thornton A, Sevick J, et al. Traumatic brain injury in homeless and marginally housed individuals: A systematic review and meta-analysis. Lancet Public Health. 2020;5(1):e19-e32.

Durand E, Chevignard M, Ruet A, Dereix A, Jourdan C, Pradat-Diehl P. History of traumatic brain injury in prison populations: A systematic review. Ann Physical Rehabilitation. 2017;60(2):95-101

St Ivany A, Schminkey D. Intimate Partner Violence and Traumatic Brain Injury: State of the Science and Next Steps. Fam Community Health. 2016;39(2):129-37.

Chapital A. Traumatic brain injury: outcomes of a rural versus urban population over a 5-year period. Hawaii Med J. 2007 Dec;66(12):318-21.

Centers for Disease Control and Prevention, National Center for Injury Prevention and Control.

Miller GF, Kegler SR, Stone DM. Traumatic brain injury–related deaths from firearm suicide: United States, 2008–2017. 2020(0):e1-e3.

Centers for Disease Control and Prevention, National Center for Injury Prevention and Control. Report to Congress on the management of traumatic brain injury in children. Atlanta (GA): Centers for Disease Control and Prevention; 2018.

Maegele M, Schöchl H, Menovsky T, Maréchal H, Marklund N, Buki A, Stanworth S. Coagulopathy and haemorrhagic progression in traumatic brain injury: advances in mechanisms, diagnosis, and management. Lancet Neurol. 2017 Aug;16(8):630-647.

Smith RA, Andrews KS, Brooks D, et al. Cancer screening in the United States, 2018: A review of current American Cancer Society guidelines and current issues in cancer screening. CA Cancer J Clin. 2018;68: 297-316.

Siegel RL, Miller KD, Jemal A. Cancer Statistics, 2019. CA Cancer J Clin. 2019;69: 7-34.

Plevritis SK, Munoz D, Kurian AW, et al. Association of Screening and Treatment With Breast Cancer Mortality by Molecular Subtype in US Women, 2000-2012. JAMA. 2018;319: 154-164.

Souza FH, Wendland EM, Rosa MI, Polanczyk CA. Is full-
field digital mammography more accurate than screen-film mammography in overall population screening? A systematic review and meta-analysis. Breast (Edinburgh, Scotland). 2013;22: 217-224.

Marmot MG, Altman DG, Cameron DA, Dewar JA, Thompson SG, Wilcox M. The benefits and harms of breast cancer screening: an independent review. Br J Cancer. 2013;108: 2205-2240.

Coldman A, Phillips N, Wilson C, et al. Pan-Canadian study of mammography screening and mortality from breast cancer. J Natl Cancer Inst. 2014;106(11). pii: dju261.

Paci E, Broeders M, Hofvind S, Puliti D, Duffy SW, Group EW. European breast cancer service screening outcomes: a first balance sheet of the benefits and harms. Cancer Epidemiol Biomarkers Prev. 2014;23: 1159-1163.

Tabar L, Dean PB, Chen TH, et al. The incidence of fatal breast cancer measures the increased effectiveness of therapy in women participating in mammography screening. Cancer. 2019;125: 515-523.

Marinovich ML, Hunter KE, Macaskill P, Houssami N. Breast Cancer Screening Using Tomosynthesis or Mammography: A Meta- analysis of Cancer Detection and Recall. J Natl Cancer Inst. 2018;110: 942-949.

Lehman CD, Arao RF, Sprague BL, et al. National Performance Benchmarks for Modern Screening Digital Mammography: Update from the Breast Cancer Surveillance Consortium. Radiology. 2017;283: 49-58.

Saslow D, Boetes C, Burke W, et al. American Cancer Society Guidelines for Breast Screening with MRI as an Adjunct to Mammography. CA Cancer J Clin. 2007;57: 75–89.

Kerlikowske K, Hubbard R, Miglioretti D, et al. Comparative- effectiveness of digital vs. film-screen mammography in community practice in the U.S. Ann Intern Med. 2011;155(8):493–502.

Breen N, Gentleman JF, Schiller JS. Update on mammography trends: comparisons of rates in 2000, 2005, and 2008. Cancer. 2011;117: 2209-2218.

IARC Working Group on the Evaluation of Cancer Preventive Strategies. IARC Handbooks of Cancer Prevention: Cervix Cancer Screening. Lyon, France: International Agency for Research on Cancer, 2005.

Leyden WA, Manos MM, Geiger AM, et al. Cervical cancer in women with comprehensive health care access: attributable factors in the screening process. J Natl Cancer Inst. 2005;97: 675-683.

Curry SJ, Krist AH, Owens DK, et al. Screening for Cervical Cancer: US Preventive Services Task Force Recommendation Statement. JAMA. 2018;320: 674-686.

Watson M, Benard V, King J, Crawford A, Saraiya M. National assessment of HPV and Pap tests: Changes in cervical cancer screening, National Health Interview Survey. Prev Med. 2017;100: 243-247.

Practitioner Protocols from Designs-For-Health

US Census Bureau. National demographic analysis tables: 2020. Updated March 10, 2022. Accessed June 15, 2022. https://www.census.gov/data/tables/2020/demo/popest/2020-demographic-analysis-tables.html

He  W, Muenchrath  MN.  90+ in the United States: 2006-2008: American Community Survey Reports. US Census Bureau. Accessed June 15, 2022. https://www2.census.gov/library/publications/2011/acs/acs-17.pdf
World Health Organization. Ageing and health. Accessed June 21, 2022. https://www.who.int/news-room/fact-sheets/detail/ageing-and-health

Berlau  DJ, Corrada  MM, Kawas  C.  The prevalence of disability in the oldest-old is high and continues to increase with age: findings from The 90+ Study.   Int J Geriatric Psychiatry. 2009;24(11):1217-1225. doi:10.1002/gps.2248PubMedGoogle ScholarCrossref

Ferrucci  L, Gonzalez-Freire  M, Fabbri  E,  et al.  Measuring biological aging in humans: a quest.   Aging Cell. 2020;19(2):e13080. doi:10.1111/acel.13080PubMedGoogle ScholarCrossref

Wagner  K-H, Cameron-Smith  D, Wessner  B, Franzke  B.  Biomarkers of aging: from function to molecular biology.   Nutrients. 2016;8(6):338. doi:10.3390/nu8060338PubMedGoogle ScholarCrossref

Horvath  S.  DNA methylation age of human tissues and cell types.   Genome Biol. 2013;14(10):R115-R115. doi:10.1186/gb-2013-14-10-r115PubMedGoogle ScholarCrossref

Hannum  G, Guinney  J, Zhao  L,  et al.  Genome-wide methylation profiles reveal quantitative views of human aging rates.   Mol Cell. 2013;49(2):359-367. doi:10.1016/j.molcel.2012.10.016PubMedGoogle ScholarCrossref

Levine  ME, Lu  AT, Quach  A,  et al.  An epigenetic biomarker of aging for lifespan and healthspan.   Aging (Albany NY). 2018;10(4):573-591. doi:10.18632/aging.101414PubMedGoogle ScholarCrossref

Lu  AT, Quach  A, Wilson  JG,  et al.  DNA methylation GrimAge strongly predicts lifespan and healthspan.   Aging (Albany NY). 2019;11(2):303-327. doi:10.18632/aging.101684PubMedGoogle ScholarCrossref

Horvath  S, Pirazzini  C, Bacalini  MG,  et al.  Decreased epigenetic age of PBMCs from Italian semi-supercentenarians and their offspring.   Aging (Albany NY). 2015;7(12):1159-1170. doi:10.18632/aging.100861PubMedGoogle ScholarCrossref

McEwen  LM, Morin  AM, Edgar  RD,  et al.  Differential DNA methylation and lymphocyte proportions in a Costa Rican high longevity region.   Epigenetics Chromatin. 2017;10:21-21. doi:10.1186/s13072-017-0128-2PubMedGoogle ScholarCrossref

Armstrong  NJ, Mather  KA, Thalamuthu  A,  et al.  Aging, exceptional longevity and comparisons of the Hannum and Horvath epigenetic clocks.   Epigenomics. 2017;9(5):689-700. doi:10.2217/epi-2016-0179PubMedGoogle ScholarCrossref

Marioni  RE, Shah  S, McRae  AF,  et al.  The epigenetic clock is correlated with physical and cognitive fitness in the Lothian Birth Cohort 1936.   Int J Epidemiol. 2015;44(4):1388-1396. doi:10.1093/ije/dyu277PubMedGoogle ScholarCrossref

Levine  ME, Lu  AT, Bennett  DA, Horvath  S.  Epigenetic age of the pre-frontal cortex is associated with neuritic plaques, amyloid load, and Alzheimer’s disease related cognitive functioning.   Aging (Albany NY). 2015;7(12):1198-1211. doi:10.18632/aging.100864PubMed Google Scholar Crossref

Sibbett  RA, Altschul  DM, Marioni  RE, Deary  IJ, Starr  JM, Russ  TC.  DNA methylation-based measures of accelerated biological ageing and the risk of dementia in the oldest-old: a study of the Lothian Birth Cohort 1921.   BMC Psychiatry. 2020;20(1):91. doi:10.1186/s12888-020-2469-9PubMedGoogle Scholar Crossref

Anderson  GL, Manson  J, Wallace  R,  et al.  Implementation of the Women’s Health Initiative study design.   Ann Epidemiol. 2003;13(9)(suppl):S5-S17. doi:10.1016/S1047-2797(03)00043-7PubMedGoogle Scholar Crossref
The Women’s Health Initiative Study Group.  Design of the Women’s Health Initiative clinical trial and observational study.   Control Clin Trials. 1998;19(1):61-109. doi:10.1016/S0197-2456(97)00078-0PubMedGoogle Scholar Crossref

Bhatti  P.  AS311—DNA methylation measured in prospectively collected blood samples and risk of bladder cancer among post-menopausal women. Women’s Health Initiative. Accessed June 15, 2022. https://sp.whi.org/researchers/data/WHIStudies/StudySites/AS311/Pages/home.aspx

Whitsel  E. AS315—epigenetic mechanisms of PM-mediated CVD risk. Women’s Health Initiative. Accessed June 15, 2022. https://sp.whi.org/researchers/data/WHIStudies/StudySites/AS315/Pages/home.aspx

Assimes  T, Tsao  P, Abhser  D, Horvath  S. BA23—integrative genomics and risk of CHD and related phenotypes in the Women’s Health Initiative. Women’s Health Initiative. Accessed June 15, 2022. https://sp.whi.org/researchers/data/WHIStudies/StudySites/BA23/pages/home.aspx

Teschendorff  AE, Marabita  F, Lechner  M,  et al.  A beta-mixture quantile normalization method for correcting probe design bias in Illumina Infinium 450 k DNA methylation data.   Bioinformatics. 2013;29(2):189-196. doi:10.1093/bioinformatics/bts680PubMedGoogle Scholar Crossref

Curb  JD, McTiernan  A, Heckbert  SR,  et al; WHI Morbidity and Mortality Committee.  Outcomes ascertainment and adjudication methods in the Women’s Health Initiative.   Ann Epidemiol. 2003;13(9)(suppl):S122-S128. doi:10.1016/S1047-2797(03)00048-6PubMedGoogle Scholar Crossref

Rand Corporation. 36-Item short form survey (SF-36). https://www.rand.org/health-care/surveys_tools/mos/36-item-short-form.html

Shumaker  SA, Reboussin  BA, Espeland  MA,  et al.  The Women’s Health Initiative Memory Study (WHIMS): a trial of the effect of estrogen therapy in preventing and slowing the progression of dementia.   Control Clin Trials. 1998;19(6):604-621. doi:10.1016/S0197-2456(98)00038-5 PubMed-Google Scholar Crossref

Carfi A, Bernabei R, Landi F. Persistent symptoms in patients after acute COVID-19. JAMA 2020.

Prescott HC, Girard TD. Recovery from Severe COVID-19. Leveraging the lessons of survival from sepsis. JAMA 2020.

Greenhalgh T, Knight M, A'Court C, Buxton M, Husain L. Management of post-acute Covid-19 in primary care. BMJ 2020.

Chopra V, Flanders SA, O'Malley M. Sixty-day outcomes among patients hospitalized withCOVID-19. Ann Intern Med 2020.

Mandal S, Barnett J, Brill SE, Brown JS, Hare SS. 'Long-COVID': a cross-sectional study of persisting symptoms, biomarker and imaging abnormalities following hospitalization for COVID-19. Thorax 2020.

Michelen M, Manoharan L, Elkheir N, Cheng V, Dagens D, Hastie C. Characterizing long-termcovid-19: a rapid living systematic review. Med Rxiv 2020.

Huang C, Huang L, Wang Y, Li X, Ren L, Gu X. 6-month consequences of COVID-19 in patients discharged from hospital: a cohort study. Lancet 2021.

Logue JK, Franko NM, McCulloch DJ, McDonald D. Sequelae in adults at 6 months after COVID-19infection. JAMA Network Open 2021; 4:e210830.

Janiri D, Carfi A, Kotzalidis GD, Bernabei R. Posttraumatic stress disorder in patients after severeCOVID-19 infection. JAMA Psychiatry 2021.

Voruz P, Allali G, Benzakour L, Jacot I, Pierce J. Long COVID neuropsychological deficits aftersevere, moderate or mild infection. Med Rxiv 2021.

Al-Aly Z, Xie Y, Bowe B. High-dimensional characterization of post-acute sequalae of COVID-19.

Yong SJ. Long-haul COVID-19: Putative pathophysiology, risk factors, and treatments. medRxiv2020.

Bek LM, Berentschot JC, Huijts S, Vlake JH, Aerts JG. Symptoms persisting after hospitalization for COVID-19: 12 month interim results of the COFLOW study. Med Rxiv 2021.

Taquet M, Geddes JR, Husain M, Luciano S, Harrison PJ. 6-month neurological and psychiatric outcomes in 236 379 survivors of COVID-19: a retrospective cohort study using electronic health records. Lancet Psychiatry 2021.

Afrin LB, Weinstock LB, Molderings GJ. COVID-19 hyperinflammation and post-Covid-19 illness may be rooted in mast cell activation syndrome. Int J Infect DIs 2020.

Bryce C, Grimes Z, Pujadas E, Ahuja S, Beasley MB, Albrecht R et al. Pathophysiology of SARS-CoV-2: targeting of endothelial cells renders a complex disease with thrombotic microangiopathy and aberrant immune response. The Mount Sinai COVID-19 autopsy experience. Med Rxiv 2020.

Magro CM, Mulvey JJ, Laurence J, Seshan S, Crowson AN, Harp J. Docked severe acute respiratory syndrome coronavirus 2 proteins within the cutaneous and subcutaneous microvasculature and their role in the pathogenesis of severe coronavirus disease 2019. Human Pathology 2020; 106:106-116.

Lu Y, Li X, Geng D, Mei N, Wu PY, Huang CC. Cerebral micro-structural changes in COVID-19 patients - An MRI-based 3-month follow-up study. EClinicalMedicine 2020.

Franke C, Ferse C, Kreye J, Rocco A, Hosp J. High frequency of cerebrospinal fluid autoantibodies in COVID-19 patients with neurological symptoms. Brain, Behavor, and Immunity 2021.

Arthur JM, Forrest JC, Boehme KW, Kennedy JL, Owens S, Liu J. Development of ACE2 autoantibodies after SARS-CoV-2 infection. PloS ONE 2021; 16:e0257016.

Cabral-Marques O, Halpert G, Schimke LF, Ostrinski Y, Vojdani A, Lattin MT. Autoantibodies targeting GPCRs and RAS-related molecules associated with COVID-19 severity. Nature Communications 2022; 13:1220.
I-RECOVER: Long COVID Treatment 2/3/2023

Medicine & Science in Sports & Exercise Copyright 2016 by the American College of Sports Medicine, Academy of Nutrition and Dietetics and Dietitians of Canada

 

Nutrient Depletion Checker References

The following is a list of clinical studies, research, and articles that our Science Board used for developing the Nutrient Depletion Checker.

Last Updated 9/14/2023

Ross Pelton, James B. LaValle, Ernest B. Hawkins. Drug-Induced Nutrient Depletion Handbook – March, 2001

Ortho Molecular Products. Whitepaper. Replete: Essential Nutrients for Drug-Induced Depletion.

Grundy SM, Cleeman JI, Daniels SR, et al; American Heart Association; National Heart, Lung, and Blood Institute. Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Circulation.

2005;112(17):2735-2752. Epub 2005 Sep 12.

American Heart Association. Metabolic syndrome. Available at: http://www.americanheart.org/presenter.jhtml?identifier=4756. Accessed February 3, 2006.

Ramsay LE, Yeo WW, Jackson PR. Metabolic effects of diuretics. Cardiology. 1994;84 Suppl 2:48-56.

Rothman R, Weinberger M. The role of pharmacists in clinical care: where do we go from here?

[Editorial] Effective Clinical Practice [serial online]. 2002;5(2). Available at: http://www.acponline.org/journals/ecp/pastiss/ma02.htm. Accessed February 2, 2006.

Rude RK. Magnesium deficiency: a cause of heterogeneous disease in humans. J Bone Miner Res. 1998;13:749-758.

Atsmon J, Dolev E. Drug-induced hypomagnesaemia. Drug Safety. 2005;28(9): 763-788.

Alaimo K, McDowell MA, Briefel RR, et al. Dietary intake of vitamins, minerals, and fiber of persons ages 2 months and over in the United States: Third National Health and Nutrition Examination Survey, Phase 1, 1988-91. Adv Data. 1994;(258):1-28.

Pelton R, LaValle JB, Hawkins EB, Krinsky DL. Drug-Induced Nutrient Depletion Handbook, 2nd ed. Hudson, Ohio: Lexi-Comp, Inc; 2001.

Pelton R, LaValle JB. The Nutritional Cost of Drugs: A Guide to Maintaining Good Nutrition While Using Prescription and Over-The-Counter Drugs, 2nd ed. Englewood, Colo: Morton Publishing; 2004.

Bralley JA, Lord RS. Laboratory Evaluations in Molecular Medicine. Norcross, Ga: The Institute for Advances in Molecular Medicine; 2001.

Nair RR, Nair P. Alteration of myocardial mechanics in marginal magnesium deficiency. Magnes Res. 2002;15(3-4):287-306.

King DE, Mainous AG 3rd, Geesey ME, Woolson RF. Dietary magnesium and C-reactive protein levels. J Am Coll Nutr. 2005;24(3):166-171.

Chaudhary DP, Boparai RK, Sharma R, Bansal DD. Studies on the development of an insulin resistant rat model by chronic feeding of low magnesium high sucrose diet. Magnes Res. 2004;17(4):293-300.

Drug Digest Monograph. Available at: www.drugdigest.org/DD/PrintablePages/ Monograph/0,7765,325|,00.html. Accessed February 2, 2006.

Messerli FH, Grossman E. Therapeutic controversies in hypertension. Semin Nephrol. 2005;25(4):227-235.

Nadler JL, Buchanan T, Natarajan R, et al. Magnesium deficiency produces insulin resistance and increased thromboxane synthesis. Hypertension. 1993;21(6 Pt 2):1024-1029.

Krinsky DL, LaValle JB, Hawkins E, Pelton R, Ashbrook Willis N. Natural Therapeutic Pocket Guide, 2nd ed. Hudson, Ohio: Lexi-Comp, Inc; 2003.

Linnane AW, Kopsidas G, Zhang C, et al. Cellular redox activity of coenzyme Q10: effect of CoQ10 supplementation on human skeletal muscle. Free Radic Res. 2002;36(4):445-453.

Moreira PI, Santos MS, Sena C, et al. CoQ10 therapy attenuates amyloid beta-peptide toxicity in brain mitochondria isolated from aged diabetic rats. Exp Neurol. 2005;196(1):112-119. Epub 2005 Aug 29.

Digiesi V, Cantini F, Oradei A, et al. Coenzyme Q10 in essential hypertension. Mol Aspects Med. 1994;15 Suppl:S257-S263.

Langsjoen P, Langsjoen P, Willis R, Folkers K. Treatment of essential hypertension with coenzyme Q10. Mol Aspects Med. 1994;15 Suppl:S265-S272.

Lamperti C, Naini AB, Lucchini V, et al. Muscle coenzyme Q10 level in statin-related myopathy. Arch Neurol. 2005;62(11):1709-1712.

Bao B, Prasad AS, Beck FW, Godmere M. Zinc modulates mRNA levels of cytokines. Am J Physiol Endocrinol Metab. 2003;285(5):E1095-102. Epub 2003 Jun 17.

Moller DE, Kaufman KD. Metabolic syndrome: a clinical and molecular perspective. Annu Rev Med. 2005;56:45-62.

Yamaguchi K, Higashiura K, Ura N, et al. The effect of tumor necrosis factor-alpha on tissue specificity and selectivity to insulin signaling. Hypertens Res. 2003;26(5):389-396.

Petersen JL, McGuire DK. Impaired glucose tolerance and impaired fasting glucose—a review of diagnosis, clinical implications and management. Diab Vasc Dis Res. 2005;2(1):9-15.

Derosa G, Cicero AF, Gaddi AV, et al. Long-term effects of glimepiride or rosiglitazone in combination with metformin on blood pressure control in type 2 diabetic patients affected by the metabolic syndrome: a 12-month, double-blind, randomized clinical trial. Clin Ther. 2005;27(9):1383-1391.

Setola E, Monti LD, Galluccio E, et al. Insulin resistance and endothelial function are improved after folate and vitamin B12 therapy in patients with metabolic syndrome: relationship between homocysteine levels and hyperinsulinemia. Eur J Endocrinol. 2004;151(4):483-489.

Hayden MR, Tyagi SC. Homocysteine and reactive oxygen species in metabolic syndrome, type 2 diabetes mellitus, and atheroscleropathy: the pleiotropic effects of folate supplementation. Nutr J. 2004;3:4.

Araki A, Hosoi T, Orimo H, Ito H. Association of plasma homocysteine with serum interleukin-6 and C-peptide levels in patients with type 2 diabetes. Metabolism. 2005;54(6):809-814.

Bonnet F, Irving K, Terra JL, et al. Depressive symptoms are associated with unhealthy lifestyles in hypertensive patients with the metabolic syndrome. J Hypertens.;23(3):611-617.

Tiemeier H, van Tuijl HR, Hofman A, et al. Vitamin B12, folate, and homocysteine in depression: the Rotterdam Study. Am J Psychiatry. 2002;159(12):2099-2101.

Sachdev PS, Parslow RA, Lux O, et al. Relationship of homocysteine, folic acid and vitamin B12 with depression in a middle-aged community sample. Psychol Med. 2005;35(4):529-538.

Picinato MC, Haber, EP, Carpinelli AR, et al., Daily rhythm of glucose induced secretion by isolated islets from the intact and pinealectomized rat. J Pineal Res. 2002; 33(3):172-177.

NHANES I Data. Findings presented at: Annual Scientific Meeting of the North American Association for the Study of Obesity; Nov 14-18, 2004; Las Vegas, Nev.

Spiegel K, Tasali E, Penev P, Van Cauter E. Brief communication: Sleep curtailment in healthy young men is associated with decreased leptin levels, elevated ghrelin levels, and increased hunger and appetite. Ann Intern Med. 2004;141(11):846-850. Summary for patients in: Ann Intern Med. 2004;141(11):I52.

Kunz D, Mahlberg R, Muller C, Tilmann A, Bes F. Melatonin in patients with reduced REM sleep duration: two randomized controlled trials. J Clin Endocrinol Metab. 2004;89(1):128-134.

Rajaratnam SM, Middleton B, Stone BM, Arendt J, Dijk DJ. Melatonin advances the circadian timing of EEG sleep and directly facilitates sleep without altering its duration in extended sleep opportunities in humans. J Physiol. 2004 ;561(Pt 1):339-351. Epub 2004 Sep 30.

Spiegel K, Knutson K, Leproult R, Tasali E, Van Cauter E. Sleep loss: a novel risk factor for insulin resistance and Type 2 diabetes. J Appl Physiol. 2005;99(5):2008-2019.

Nishida S. Metabolic Effects of Melatonin on oxidative stress and diabetes mellitus. Endocrine. 2005;27(2):131-136.

Blask DE, Dauchy RT, Sauer LA. Putting cancer to sleep at night: the neuroendocrine/circadian melatonin signal. Endocrine. 2005.

Boullata J, Armenti V, et al. Handbook of Drug-Nutrient Interactions, Second Edition. Humana Press, 2010.

Pelton R; LaValle J, Hawkins E, Krinsky, D. Drug-Induced Nutrient Depletion Handbook, 2nd Edition. LexiComp, 2001.